How malaria evades the body’s immune response

How malaria evades the body’s immune response





The mosquito-borne parasites that cause human malaria and make it particularly lethal; have a unique ability to evade destruction by the body’s immune system; diminishing its ability to develop immunity and fight the infection, a Yale study has found.


The study appears in the Online Early Edition of the Proceedings of the National Academy of Sciences.


One of the biggest problems in controlling it in regions of high transmission; where it continues to account for over one million deaths yearly; is that protective immunity against re-infection does not occur.


It is believed that inadequate formation and maintenance of infection-fighting memory T-cells are at the root of this immune malfunction. Equally important, this phenomenon also frustrates efforts to develop effective vaccines.



How malaria evades the body’s immune response



It’s known that it causes a highly inflammatory response in infected individuals. This leads to the deadly clinical complications of anemia and cerebral disease.


Specifically, the Yale research team learned that the parasites produce their own version of a human cytokine, or immune hormone; which directs the inflammatory response during malaria. They also discovered that this cytokine, called PMIF, incapacitates the anti-malaria, memory T-cell immune response.



ALSO READ: Using soup to fight off malaria


How malaria short-circuits body’s immune response

Using a genetically modified strain of the parasite in mice, the Yale team found that PMIF causes host T-cells to develop into short-lived effector cells rather than protective memory cells. The short-lived cells die during the infection, and the long-lived memory T-cells are not produced in adequate numbers to combat the infection or to protect from re-infection, which occurs repeatedly in malaria-endemic regions.



These findings indicate that malaria parasites actively interfere with the development of immunological memory, and may account for the inhibition of protective immune responses in human malaria,” said Rick Bucala, M.D., professor of internal medicine, pathology, and epidemiology and public health at Yale School of Medicine.



“This knowledge will help us identify specific therapies that can protect anti-malarial T-cells from death and improve an individual’s immune response to infection or to vaccination.”







About The Author

Osigweh Lilian Oluchi is a graduate of the University of Lagos where she obtained a B.A (Hons) in English, Masters in Public and International affairs (MPIA). Currently works with 1stnews as a Database Manager / Writer. [email protected]

Related posts

Leave a Reply

Your email address will not be published. Required fields are marked *